转炉技术继续深入开发的目标是改进工艺的经济性,即优化物流和设备操作,优化工艺技术。工艺技术的优化不是简单的局限于目标分析、目标温度的确定和添加材料的选择,他还包括生产操作,如氧枪操作的枪位和吹炼模式、副枪的浸没时间与深度、添加系统的添加模式、炉底搅拌系统的搅拌模式等。所有这些都必须在设备投产前标准化,在试车调试中针对所生产的钢种进行优化。
动态工艺控制需要副枪系统和放散煤气分析。副枪系统测量温度、含碳量和熔池液面位置,在炼钢过程中取样。因此,在吹炼中实现测量时可能的,也不会损失生产时间。副枪系统是完全自动化的,测量探针能在90s内能完成更换。近几年在工艺自动化领域里的发展是使用Dynacon系统实现了完全的动态控制。该系统通过连续的煤气分析,实现从吹炼起点到吹炼终点的炼钢过程控制。
挡渣器的作用是降低盛钢桶的炉渣携带量。挡渣操作降低了脱氧材料的消耗,尤其是在生产低碳钢种时。另一个特点是在二次冶金中需要钢包渣脱硫,挡渣操作也能降低钢包渣添加剂的用量。同时,也避免了盛钢桶的除渣操作和温度损失。二次冶金需要的钢包渣就这样在转炉出钢过程中形成了。
根据经验,当不使用挡渣器时,出钢时的炉渣携带量为10-14kg/t钢,在采用挡渣后,炉渣携带量降低到了3-5kg/t钢的水平。与炉渣感应器配合使用,炉渣携带量可稳定地控制在2、3kg/t钢的范围内。它的另一个优点是降低了磷含量,从大约30ppm降到了10ppm。因此,磷含量不合格的炉次减少了。
鉴于底吹转炉改进的冶金效果,如OBM/Q-BOP、K-OBM等,决定开发顶吹转炉的炉底惰性气体搅拌技术。该系统应该利用底吹的优点,同时要避免炉役中期更换炉底的缺点。以奥钢联第三转炉厂为例,当1650℃无搅拌条件下,吹炼终点碳含量0,035%[C]×ao的平均值为0.0033,当采用吨钢流量为0.08Nm3/min的底吹搅拌时,这个值降低到了0.0023。如果不采用底吹搅拌,大约有1%的铁损,石灰消耗增加约25%。假定钢包中炉渣携带量12kg./t钢(无挡渣),则吨钢铝消耗量增加0.7kg。而且,相应的,转炉渣量越大,也越能消耗耐火材料。在没有底吹搅拌的BOF转炉上,吹炼终点碳达到0.035%是不经济的,碳含量一般限定在0.045%~0.050%范围内。
物流优化和路径算法是专门为钢厂和生产设备的布置而设计的,用来寻找最佳的配置。用户友好型界面和标准化输出使其成为一个非常好用的工具,能够优化、模拟任何钢厂的配置,允许用户测试多种不同的布局和工艺选择方案。它使用户能够找到在生产时间管理、维护、附属设备产能等方面的最佳的解决方案。
为了确定不同钢种最经济的生产方式和使用不同的生产设备,就需要长期的经验积累和大量的计算,来比较各种可供选择的办法。计算机辅助工具,比如炼钢专家系统,对于进行这种计算是必需的。这种工具可以应用到整个生产线中。
总结
钢铁生产企业在成本和质量方面的压力一度增长,现在对生产灵活性、缩短交货时间等方面又有厂高度需求。自从氧气炼钢产生以来,转炉便成为不断改进的焦点,期望延长寿命,增加装入量,降低维护等。对于实现长寿,转炉悬挂系统是绝对重要的。
为了生产优质钢,为了提高工艺的经济性,开了诸如副枪、挡渣器和炉底搅拌等零部件和自动化系统。对工艺技术的不断改进与标准化,这些零部件的应用,对工厂物流的研究以及成本优化等,这些都是钢铁生产企业有效的工具。这些工具对在生产成本与利润方面的竞争作出了颇有价值的贡献。
|